This is Constantine Alexander's Typepad Profile.
Join Typepad and start following Constantine Alexander's activity
Join Now!
Already a member? Sign In
Constantine Alexander
Where Nature runs Wild!
I love not Man the less, but Nature more.
Recent Activity
Image
Megacities contain at least 10 million people whose wellbeing largely depends on ecosystem services provided by remote natural areas. What is, however, most often disregarded is that nature conservation in the city can also contribute to human wellbeing benefits. The most common mind set separates cities from the rest of nature, as if they were not special kinds of natural habitats. Instead, awareness that urban systems are also nature and do host biodiversity and ecosystem services opportunities, should push urban people towards increased urban forest conservation and implementation strategies. This research estimated existing and potential, tree cover, and its contribution to ecosystem services in 10 megacity metropolitan areas, across 5 different continents and biomes. We developed estimates for each megacity using local data to transform i-Tree Eco estimates of tree cover benefits to reductions in air pollution, stormwater, building energy, and carbon emissions for London, UK. The transformation used biophysical scaling equations based on local megacity tree cover, human population, air pollution, climate, energy use, and purchasing power parity. The megacity metropolitan areas ranged from 1173 to 18,720 sq km (median value 2530 sq km), with median tree cover 21%, and potential tree cover another 19% of the city. Megacities had a median tree cover density of 39 m2/capita, much smaller than the global average value of 7800 m2/capita, with density lower in desert and tropical biomes, and higher in temperate biomes. The present median benefit value from urban trees in all 10 megacities can be estimated as $482 million/yr due to reductions in CO, NO2, SO2, PM10, and PM2.5, $11 million/yr due to avoided stormwater processing by wastewater facilities, $0.5 million/yr due to building energy heating and cooling savings, and $8 million/yr due to CO2 sequestration. Planting more trees in potential tree cover areas could nearly double the benefits provided by the urban forest. In 2016 there were 40 megacities, totaling 722 million residents, nearly 10% of the human population, who would benefit from nature conservation plans where they work and live. Nature conservation strategies in megacities should work to sustain and grow the benefits of the urban forest, and improve accounting methods to include additional ecosystem services provided by the urban forest. Continue reading
Posted 17 hours ago at Constantine Alexander's Journal
Image
Infographic Credit: Lindsay Lafreniere. Fish are expected to shrink in size by 20 to 30 per cent if ocean temperatures continue to climb due to climate change. A new study by researchers at the University of British Columbia provides a deeper explanation of why fish are expected to decline in... Continue reading
Posted 17 hours ago at Constantine Alexander's Journal
Image
HOT crew member Tara Clemente collects water from the CTD rosette for sample processing. Credit: HOT Program, UHM SOEST. Microbes dominate the planet, especially the ocean, and help support the entire marine food web. In a recent report published in Nature Microbiology, University of Hawai'i at Mānoa (UHM) oceanography professor... Continue reading
Posted 5 days ago at Constantine Alexander's Journal
Image
PNNL's ThermalTracker software can aid responsible wind farm siting and operations. Pacific Northwest National Laboratory's (PNNL) ThermalTracker software analyzes thermal video to help birds and bats near offshore wind farms. PNNL engineer Shari Matzner is shown here with a thermal video camera she's using for this research. Credit: PNNL. The... Continue reading
Posted Aug 13, 2017 at Constantine Alexander's Journal
Image
Anthropogenic noise is a significant pollutant of the world's oceans, affecting behavioural and physiological traits in a range of species, including anti-predator behaviours. Using the open field test, we investigated the effects of recordings of piling and drilling noise on the anti-predator behaviour of captive juvenile European seabass in response to a visual stimulus (a predatory mimic). The impulsive nature of piling noise triggered a reflexive startle response, which contrasted the behaviour elicited by the continuous drilling noise. When presented with the predatory mimic, fish exposed to both piling and drilling noise explored the experimental arena more extensively than control fish exposed to ambient noise. Fish under drilling and piling conditions also exhibited reduced predator inspection behaviour. Piling and drilling noise induced stress as measured by ventilation rate. This study provides further evidence that the behaviour and physiology of European seabass is significantly affected by exposure to elevated noise levels. Continue reading
Posted Aug 12, 2017 at Constantine Alexander's Journal
Image
Since private landowners are critical partners in efforts to save coastal marshes, identifying the best strategies will be essential to success. Fence Creek, Madison, Connecticut. Credit: UConn. While popular with conservation groups, coastal easements that prevent development in order to protect marshland from changes brought about by climate change and... Continue reading
Posted Aug 10, 2017 at Constantine Alexander's Journal
Image
New study shows Shortfin mako shark fishing mortality rate is much higher than previously thought. Shortfin mako shark in the north Atlantic at Condor Bank, Azores. Credit: Patrick Doll (CC 3.0) More bad news for sharks. A new study using satellite tracking by researchers from Nova Southeastern University's Guy Harvey... Continue reading
Posted Aug 8, 2017 at Constantine Alexander's Journal
Image
This opinion piece explores how implementing a species royalty for the use of animal symbolism in affluent cultural economies could revolutionise conservation funding. A revenue revolution of this scale is urgently necessary to confront the sixth mass extinction that the planet is now facing. But such a revolution can only occur if the approach to conservation now evolves quickly across disciplines, continents, cultures and economies. This piece is a call to action for research-, culture-, and business-communities to implement a new ethical phase in economic policy that recognises the global cultural debt to the world’s most charismatic wildlife species. Continue reading
Posted Aug 6, 2017 at Constantine Alexander's Journal
Image
Due to spatio-temporal variability of lower trophic-level productivity along the California Current Ecosystem (CCE), predators must be capable of switching prey or foraging areas in response to changes in environmental conditions and available forage. The Gulf of the Farallones in central California represents a biodiversity hotspot and contains the largest common murre (Uria aalge) colonies along the CCE. During spring, one of the West Coast's most important Chinook salmon (Oncorhynchus tshawytscha) populations out-migrates into the Gulf of the Farallones. We quantify the effect of predation on juvenile Chinook salmon associated with ecosystem-level variability by integrating long-term time series of environmental conditions (upwelling, river discharge), forage species abundance within central CCE, and population size, at-sea distribution, and diet of the common murre. Our results demonstrate common murres typically forage in the vicinity of their offshore breeding sites, but in years in which their primary prey, pelagic young-of-year rockfish (Sebastes spp.), are less available they forage for adult northern anchovies (Engraulis mordax) nearshore. Incidentally, while foraging inshore, common murre consumption of out-migrating juvenile Chinook salmon, which are collocated with northern anchovy, increases and population survival of the salmon is significantly reduced. Results support earlier findings that show timing and strength of upwelling, and the resultant forage fish assemblage, is related to Chinook salmon recruitment variability in the CCE, but we extend those results by demonstrating the significance of top-down impacts associated with these bottom-up dynamics. Our results demonstrate the complexity of ecosystem interactions and impacts between higher trophic-level predators and their prey, complexities necessary to quantify in order to parameterize ecosystem models and evaluate likely outcomes of ecosystem management options. Continue reading
Posted Aug 5, 2017 at Constantine Alexander's Journal
Image
Text mining and analytics may offer possibilities to assess scientists' professional writing and identify patterns of co-occurrence between words and phrases associated with different environmental challenges and their potential solutions. This approach has the potential to help to track emerging issues, semi-automate horizon scanning processes, and identify how different institutions or policy instruments are associated with different types of ocean and coastal sustainability challenges. Here I examine ecologically-oriented ocean and coastal science journal article abstracts published between 2006 and 2015. Informed by the Institutional Analysis and Development (IAD) framework, I constructed a dictionary containing phrases associated with 40 ocean challenges and 15 solution-oriented instrument or investments. From 50,817 potentially relevant abstracts, different patterns of co-occurring text associated with challenges and potential solutions were discernable. Topics receiving significantly increased attention in the literature in 2014–15 relative to the 2006–13 period included: marine plastics and debris; environmental conservation; social impacts; ocean acidification; general terrestrial influences; co-management strategies; ocean warming; licensing and access rights; oil spills; and economic impacts. Articles relating to global environmental change were consistently among the most cited; marine plastics and ecosystem trophic structure were also focal topics among the highly cited articles. This exploratory research suggests that scientists' written outputs provide fertile ground for identifying and tracking important and emerging ocean sustainability issues and their possible solutions, as well as the organizations and scientists who work on them. Continue reading
Posted Aug 5, 2017 at Constantine Alexander's Journal
Image
Aquacultures are polluting Chile's rivers with a cocktail of dissolved organic substances. Salmon Farming, Chile. The waste water is conducted into the river through a pipe (center of picture). Credit: Norbert Kamjunke. Salmon lead a fairly varied life. The adult fish live in the sea but swim upstream into rivers... Continue reading
Posted Jul 30, 2017 at Constantine Alexander's Journal
Image
Lemur photo courtesy of MSU. Leading scientists from around the world convened this week at the International Congress for Conservation Biology in Cartagena, Colombia, to discuss how to better leverage science to combat illegal wildlife trade, both within countries and across international borders. "The scope and scale of illegal wildlife... Continue reading
Posted Jul 29, 2017 at Constantine Alexander's Journal
Image
Vinegar and heat are found to be the best treatment of stings from lion's mane jellyfish. This is a Lion's mane jellyfish in Dingle Harbour, Ireland. Photo: Nuala Moore. New research from NUI Galway and the University of Hawaii at Manoa has identified the best way to treat a sting... Continue reading
Posted Jul 28, 2017 at Constantine Alexander's Journal
Image
Past severe droughts over North America have led to massive water shortages and increases in wildfire frequency. Triggering sources for multi-year droughts in this region include randomly occurring atmospheric blocking patterns, ocean impacts on atmospheric circulation, and climate’s response to anthropogenic radiative forcings. A combination of these sources translates into a difficulty to predict the onset and length of such droughts on multi-year timescales. Here we present results from a new multi-year dynamical prediction system that exhibits a high degree of skill in forecasting wildfire probabilities and drought for 10–23 and 10–45 months lead time, which extends far beyond the current seasonal prediction activities for southwestern North America. Using a state-of-the-art earth system model along with 3-dimensional ocean data assimilation and by prescribing the external radiative forcings, this system simulates the observed low-frequency variability of precipitation, soil water, and wildfire probabilities in close agreement with observational records and reanalysis data. The underlying source of multi-year predictability can be traced back to variations of the Atlantic/Pacific sea surface temperature gradient, external radiative forcings, and the low-pass filtering characteristics of soils. Continue reading
Posted Jul 28, 2017 at Constantine Alexander's Journal
Image
Seagrass meadows commonly reside in shallow sheltered embayments typical of the locations that provide an attractive option for mooring boats. Given the potential for boat moorings to result in disturbance to the seabed due to repeated physical impact, these moorings may present a significant threat to seagrass meadows. The seagrass Zostera marina (known as eelgrass) is extensive across the northern hemisphere, forming critical fisheries habitat and creating efficient long-term stores of carbon in sediments. Although boat moorings have been documented to impact seagrasses, studies to date have been conducted on the slow growing Posidonia species’ rather than the fast growing and rapidly reproducing Z. marina that may have a higher capacity to resist and recover from repeated disturbance. In the present study we examine swinging chain boat moorings in seagrass meadows across a range of sites in the United Kingdom to determine whether such moorings have a negative impact on the seagrass Zostera marina at the local and meadow scale. We provide conclusive evidence from multiple sites that Z. marina is damaged by swinging chain moorings leading to a loss of at least 6 ha of United Kingdom seagrass. Each swinging chain mooring was found to result in the loss of 122 m2 of seagrass. Loss is restricted to the area surrounding the mooring and the impact does not appear to translate to a meadow scale. This loss of United Kingdom seagrass from boat moorings is small but significant at a local scale. This is because it fragments existing meadows and ultimately reduces their resilience to other stressors. Boat moorings are prevalent in seagrass globally and it is likely this impairs their ecosystem functioning. Given the extensive ecosystem service value of seagrasses in terms of factors such as carbon storage and fish habitat such loss is of cause for concern. This indicates the need for the widespread use of seagrass friendly mooring systems in and around seagrass. Continue reading
Posted Jul 28, 2017 at Constantine Alexander's Journal
Image
Among the different pharmaceuticals present in soil and water ecosystems as micro-contaminants, considerable attention has been paid to antibiotics, since their increasing use and the consequent development of multi-resistant bacteria pose serious risks to human and veterinary health. Moreover, once they have entered the environment, antibiotics can affect natural microbial communities. The latter play a key role in fundamental ecological processes, most importantly the maintenance of soil and water quality. In fact, they are involved in biogeochemical cycling and organic contaminant degradation thanks to their large reservoir of genetic diversity and metabolic capability. When antibiotics occur in the environment, they can hamper microbial community structure and functioning in different ways and have both direct (short-term) and indirect (long-term) effects on microbial communities. The short-term ones are bactericide and bacteriostatic actions with a consequent disappearance of some microbial populations and their ecological functioning. The indirect impact includes the development of antibiotic resistant bacteria and in some cases bacterial strains able to degrade them by metabolic or co-metabolic processes. Biodegradation makes it possible to completely remove a toxic compound from the environment if it is mineralized. Continue reading
Posted Jul 26, 2017 at Constantine Alexander's Journal
Image
Deep-sea hydrothermal vents in the Pescadero Basin emit scalding liquids that form light-colored carbonate spires. These vents have been colonized by the largest and densest colonies of Oasisia alvinae tubeworms ever observed. Credit: © 2015 MBARI. An article just published in the Proceedings of the Royal Society B describes two... Continue reading
Posted Jul 25, 2017 at Constantine Alexander's Journal
Image
Climate variability is critically important for nature and society, especially if it increases in amplitude and/or fluctuations become more persistent. However, the issues of whether climate variability is changing, and if so, whether this is due to anthropogenic forcing, are subjects of ongoing debate. Increases in the amplitude and persistence of temperature fluctuations have been detected in some regions, e.g. the North Pacific, but there is no agreed global signal. Here we systematically scan monthly surface temperature indices and spatial datasets to look for trends in variance and autocorrelation (persistence). We show that monthly temperature variability and autocorrelation increased over 1957–2002 across large parts of the North Pacific, North Atlantic, North America and the Mediterranean. Furthermore, (multi)decadal internal climate variability appears to influence trends in monthly temperature variability and autocorrelation. Historically-forced climate models do not reproduce the observed trends in temperature variance and autocorrelation, consistent with the models poorly capturing (multi)decadal internal climate variability. Based on a review of established spatial correlations and corresponding mechanistic ‘teleconnections’ we hypothesise that observed slowing down of sea surface temperature variability contributed to observed increases in land temperature variability and autocorrelation, which in turn contributed to persistent droughts in North America and the Mediterranean. Continue reading
Posted Jul 22, 2017 at Constantine Alexander's Journal
Image
Southern right whales right at home at Tasmanian waters. The research, carried out by scientists at the University of Zurich and University of Tasmania, used detailed records collected during the commercial whaling of the 20th century and collated by the International Whaling Committee (IWC) - to look at the effects... Continue reading
Posted Jul 21, 2017 at Constantine Alexander's Journal
Image
By Science for Environment Policy The available and emerging renewable technologies suitable for urban environments have been assessed in a recent study. Wind and solar technology can now be integrated into building design, and smart grids and metering can more efficiently manage energy production and demand at a local level.... Continue reading
Posted Jul 21, 2017 at Constantine Alexander's Journal
Image
Last month was recorded as the warmest June ever in many parts of the world. Last year, 2016, was the warmest year in the modern temperature record. Our planet is constantly heating up. This poses direct threats to humans, like extreme weather events and global sea-level rise, but scientists are... Continue reading
Posted Jul 16, 2017 at Constantine Alexander's Journal
Image
Group formation in animals is a widespread phenomenon driven by food acquisition, reproduction, and defense. Life in the ocean is characteristically aggregated into horizontally extensive layers as a result of strong vertical gradients in the environment. Each day, animals in high biomass aggregations called “deep scattering layers” migrate vertically, comprising the largest net animal movement on earth. This movement is commonly thought of as a predator avoidance tactic, however, the aggregation of animals into layers has been viewed as an incidental outcome of similar responses by many individuals to the risk of visual predation coupled with the location of resources including food and oxygen rather than active, socially mediated congregation for defense purposes. Here, using a newly adapted autonomous vehicle to measure individual characteristics, we provide the first measures of the internal layer structure, demonstrating that these features are made up of many topologically scaled, mono-specific aggregations, or “schools” rather than an indiscriminate mix of sizes and species. Schools responded to predators using behavior much like flash compression while neighboring aggregations increased their spacing to maintain coherent layers. Rather than simply an incidental outcome, the formation of layers of life in the sea is a highly organized process driven, at least in part, by biotic pressures for cohesion with broad adaptive significance for the myriad species that inhabit these ubiquitous features. These observations highlight the range of spatial scales we must examine in order to understand the strong impacts these high-biomass layers have on ecological and biogeochemical processes in the sea. Continue reading
Posted Jul 16, 2017 at Constantine Alexander's Journal
Image
Biological clocks are a ubiquitous ancient and adaptive mechanism enabling organisms to anticipate environmental cycles and to regulate behavioral and physiological processes accordingly [1]. Although terrestrial circadian clocks are well understood, knowledge of clocks in marine organisms is still very limited [2, 3, 4, 5]. This is particularly true for abundant species displaying large-scale rhythms like diel vertical migration (DVM) that contribute significantly to shaping their respective ecosystems [6]. Here we describe exogenous cycles and endogenous rhythms associated with DVM of the ecologically important and highly abundant planktic copepod Calanus finmarchicus. In the laboratory, C. finmarchicus shows circadian rhythms of DVM, metabolism, and most core circadian clock genes (clock, period1, period2, timeless, cryptochrome2, and clockwork orange). Most of these genes also cycle in animals assessed in the wild, though expression is less rhythmic at depth (50–140 m) relative to shallow-caught animals (0–50 m). Further, peak expressions of clock genes generally occurred at either sunset or sunrise, coinciding with peak migration times. Including one of the first field investigations of clock genes in a marine species [5, 7], this study couples clock gene measurements with laboratory and field data on DVM. While the mechanistic connection remains elusive, our results imply a high degree of causality between clock gene expression and one of the planet’s largest daily migrations of biomass. We thus suggest that circadian clocks increase zooplankton fitness by optimizing the temporal trade-off between feeding and predator avoidance, especially when environmental drivers are weak or absent. Continue reading
Posted Jul 15, 2017 at Constantine Alexander's Journal
Image
A rebreather diver with the submersible Pisces V working together at ~90 m depth to collect corals and macroalgae in the 'Au'au Channel. Credit: Robert K Whitton. Researchers from the University of Hawai'i at Mānoa (UHM) Department of Botany have discovered hundreds of potentially new species of fungi in the... Continue reading
Posted Jul 15, 2017 at Constantine Alexander's Journal
Image
Deep-sea scleractinian coral reefs are protected ecologically and biologically significant areas that support global fisheries. The absence of observations of deep-sea scleractinian reefs in the Central and Northeast Pacific, combined with the shallow aragonite saturation horizon (ASH) and high carbonate dissolution rates there, fueled the hypothesis that reef formation in the North Pacific was improbable. Despite this, we report the discovery of live scleractinian reefs on six seamounts of the Northwestern Hawaiian Islands and Emperor Seamount Chain at depths of 535–732 m and aragonite saturation state (Ωarag) values of 0.71–1.33. Although the ASH becomes deeper moving northwest along the chains, the depth distribution of the reefs becomes shallower, suggesting the ASH is having little influence on their distribution. Higher chlorophyll moving to the northwest may partially explain the geographic distribution of the reefs. Principle Components Analysis suggests that currents are also an important factor in their distribution, but neither chlorophyll nor the available current data can explain the unexpected depth distribution. Further environmental data is needed to elucidate the reason for the distribution of these reefs. The discovery of reef-forming scleractinians in this region is of concern because a number of the sites occur on seamounts with active trawl fisheries. Continue reading
Posted Jul 15, 2017 at Constantine Alexander's Journal