This is GasperG's Typepad Profile.
Join Typepad and start following GasperG's activity
Join Now!
Already a member? Sign In
GasperG
Recent Activity
This type of shifting is only possible with electric motor, because it must cooperate and change load instantly without driver noticing it. I thing Renault is doing something similar with their hybrid without a clutch. No matter how instant the shift is, it means that motor must suddenly change rpm and that the motor is the integral part of transmission, you can't just bolt this thing to an EV and expect it to work.
I don't know what went wrong here but either this was not a good Hypermiling effort or ID.3 is just not an efficient EV. Hypermiling Kona EV resulted in consumption of just 6.3 kWh/100 km (1026 km), and Model 3 someone managed to do 7 kWh/100 km (975 km).
Did I miss something here, or is there really no AWD option???
30 miles of range with a 24 kWh battery??? What is the MPG when on gas engine alone? I think it's better not to know.
warranty is not equal to expected life, this two things may be far apart. Every EV should be designed so that battery outlast the car, just use it as energy storage when the car is not in use anymore.
The key thing is: "Silica, one of the most abundant metal oxides, is low-cost, easy to process..." Sulfur is also a low cost element 2.000 cycles is a good achievement I don't even care about energy density at this point, just give us cheaper batteries that last.
I think there is to much obsession with higher energy density, meanwhile existing technology is still incrementing slowly in energy density, but more importantly it's also surpassing 2000 cycle life and getting to 4000 cycles. What is more beneficial? Battery that will last 15 years in a car and then also have second life in storage for additional 15 years. Or super high energy density battery that will last "only" 10 years in an EV or 1000 cycles as stated in this article? And still currently this Technology is at 350 cycles, there is still long path to get to 1000.
Measuring PM is a difficult task, because a measurement alone doesn't tell us what this particles are. I heard that near the sea those measurements are increased because of salt in the air and salt is actually beneficial for respiratory system. This study is about diesel PM only and depending on your location this can be or it may not be a major component of air pollution. By the busy road in Europe where many cars are run on diesel not to mention trucks this sure is a big concern.
What am I saying? It's all about cost, making "normal" power EV go faster than 180 kph just means more cost or maybe even know-how, why bother when you already limited the whole range of models including ICE to 180 kph. Official Volvo argument is safety, but I think it's not the only reason :)
I think this is just preparing the field for EVs. If you have EV it's somewhat hard to make it go faster than 180 kmh, so why bother since every Volvo is already limited to 180 kmh ;)
Longevity is the key in battery chemistry, without it, field of use is severely limited. But it's a start with small production and then getting better and better.
Well, the title of this site is Green Car Congress, so sorry about my obsession about MPG. OK, even if this is performance model, there is not much to like about the architecture of this drivetrain, it's mechanically complicated. They should invest more in the electric part and get rid of 8 speed transmission, give it more powerfull el. motors on each axle.... As I said this is just a bolt on electric drive on existing outdated drivetrain.
I wonder what MPG this thing will get in hybrid mode. It has mechanical AWD, standard TC 8-speed automatic. It seems the hybrid part is just a bolt on and without a plug this thing would be an absolute failure... It may be a failure even with a plug.
TLJ and Roger. The problem with plug-in hybrids is power that is available when in EV mode, when you have charge in the battery you don't wan't gas engine to kick in, even if you do an overtake or you are merging on the highway. So then when you have 100+ kW of power in EV mode this is nothing special, it's like a normal car territory. But in hybrid mode you still have this additional 100 kW EV boost, so it's only logical to use it.
Now I see it's turbocharged, definitely an interesting and simple design, hope it finds it's way into production soon.
Wonder how this will work when in hybrid mode, engine is undersized, so it will run at certain constant load, to make a buffer in the battery, this disconnected operation in regards to the gas pedal can be problematic with what people expect from the car. In SAE paper they are talking about of the 2-cyl. engine with 1.0-L and the 3-cyl. with 1.5-L. It won't be a turbo charged and if it will be "atkinsonized" for efficiency it will be too low power, for something like J-segment SUV. Other than that, an impressive tech.
Does this battery have any form of cooling? The case is plastic, how does that affect heat dissipation?
I would categorise two very distinctive cases: - running red light on purpose, just when the light changes, yes a problem but not a huge one. - running red light when distracted (on the phone), this is a huge problem and results in crash nearly every time.
The problem is that supplier is developing more or less this on it's own and trying to sell it to manufacturers. The manufacturer then assembles all the parts as Lego blocks, so the additional cost of the hybrid system is directly the additional cost of the end product. Building the full hybrid system from the ground up (Toyota, Honda, Renault...) can result in the cost saving elsewhere, for eg. transmission. Instead of transmission there are some simple gears, but of course you then need two MGs. You save on the mechanical cost and complexity but you add value through higher cost of electric part. In the end you end up in similar price range, even if full hybrid cost a little more it also offers more and is more reliable (less moving parts). The consumer will have the last saying and I think the consumer can value and chose the superior technology even if it costs 5% more.
Ouch, those Amps are huge, if the battery is in the back and motor in front, what kind of cable will you need? Are those high voltage orange cables really that more expensive? I'm a little puzzled, Toyota has run the cost down so much, that the price of their hybrids are getting in the "normal price" region. No matter how much this "bolt on" system costs it already costs too much. The right way of hybridisation is engine and transmission simplification. I don't know how this 3rd party "bolt on" solution will survive, a full hybrid drivetrain should be made from the ground up, IMO the only way to keep costs low.
Opel is in PSA group (Peugeot, Citroen), nothing to do with VW.
VW is producing 10 milions vehicles per year, it WILL take the long time for EVs to take the ICEs place, no mater what. It certainly is better to develop ICE further than just leave it where it is. But I'm questioning this 48V systems on top of already complicated DI Turbo ICEs with DCT gearboxes. In the end this will not come out as a cheap and simple system. I'm advocate of strong electrification and mechanical simplicity, new Corolla hybrid is already cheaper than Golf TDI DSG alone, what will this 48V system add? Toyota system is proven to last, where the DSG gearbox isn't really a synonym for reliability and how long will that 48 V li-ion battery last? A lot of unknowns in terms of reliability. Then there is driving experience, the VW 48V system is already available in Audi and I'm not exactly reading pleasant reviews about it. The 48V system is not strong enough to provide instant throttle response and in the name of fuel saving this system shuts off the engine when coasting, so a turbo engine will have even more lag than it already does. Yes speculation, I know, we will just have to wait and see how Golf does it.
Consumption is important if you are comparing a car that emits majority of CO2 in the production cycle and very little under driving (EV) and a car that is easily prudeced and then emits tons of CO2 when driving (diesel). If you take very small consumption for both, diesel will benefit, if you take higher consumption, EV will benefit. EV has benefits beyond CO2 emissions, EVs will be getting cleaner with cleaner electricity, diesel car will get dirtier and dirtier through it's life cycle. Not to mention maintanance and regulation of thousands of small tailpipes, compared to one big chimney in power plant. After all an averege car on the road is 10 years old, ask your self how does that DPF work on car that old and what does a normal do when they face the problems with EGR, DPF... Or cars that consume more oil or have their injectors just a little outside of parameters. People don't intentionally modify their cars to be rolling coal, but when the problems arises there are many "experts" that will fix the problem for a little fee to the wallet but a big fee for enviroment.
Peter_XX, the figures of "in use CO2" are too low, probably the NEDC numbers. 111 g CO2 from TDI means 4.2 l/100 km, this too low for Golf TDI, real world data from 400 sample size shows a consumption of 5.5 l/100 km, that is 145 g CO2. For the EV they are probably also to low, but then again there are countries that don't burn so much coal for electricity than Germany. On the other hand CO2 of diesel or petrol both with 40% thermal efficiency engines will be around the same in hybrid application, so why not just take the Prius 4.5 l/100 km (real world 240 sample size), that gives you 105 g CO2 tailpipe emissions. Calculation of tailpipe CO2 are really easy, just take the consumption: 1 Liter Petrol burns to 2,33 Kilogramm CO2 1 Liter Diesel burns to 2,64 Kilogramm CO2